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A continuum-discrete model, in which particles are described by the collisionless kinetic 
equation, and the gas - by equations of continuous media, has been suggested in [i] for the 
case of a low bulk particle concentration. It has been shown that condensations in the 
particle ensemble, called caustics, can occur in this model. The generation and evolution 
of caustics; in a two-phase medium have several features comparable to a medium of noninter- 
acting particles [i, 2], relatedtoparticle interactions with the gas. Firstly, caustics 
are not always generated (in the case of monodisperse particles), but only when the velocity 
gradient is negative and smaller than some fixed value [i]. Secondly, as shown below, 
caustics can be generated even when the particle and gas velocities are constant at the 
moment t = 0, but in this case the particle sizes (or their true density) vary. It is noted 
that caustics have a different physical nature, unnoticed by the author of [3], since the 
generation of the latter is due to particle collisions. Vortex sheets are generated at high 
bulk concentrations, and caustics - at low concentrations. Thus, both models cover the whole 

region of particle concentrations. 

i. We consider one-dimensional nonstationary flow of a mixture of gas with particles 
with a low particle bulk concentration 02/Pl ~- 10-2. In this case the system of equations of 
[i] is simplified, since the effect of particles on the gas can be ignored: 
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Here P~I, 01, u~, v are the true and mean density, the velocity, and the kinematic viscosity 
of the gas, P22, P2, u2, m2, f are the true and mean density, the velocity, the bulk concentra- 
tion, and the distribution function, and r is the particle radius. The condition P2/Pl = 10-2 
takes place, for example, for aerosol and water drops in a cloud. The system (i.i) is valid 
when 
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Assuming Re = 0.i, P221Pll = 103, we obtain Kn = 30 for m 2 = 10 -3 , therefore the system (i.i) 

is valid up to m 2 ~ 10 -3 . An equation for m 2 (the particle bulk concentration) was intro- 
duced in [4, 5] for flow with large gradients. For smooth flows (z >> r, z being the charac- 
teristic size of variation of flow parameters) this equation transforms to the usual m= = 
(4/3)~r3n. 

Now consider the Cauchy problem for system (i.i) in the presence of particle dispersion 
in sizes with the initial conditions 
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The solution of the first equation of system (i.i) was found in [i] by the method of charac- 
teristics. The corresponding integral, determining n(t, x) is calculated by the steepest des- 
cent method. Unlike [i], the expansion of the exponent is carried out in the small parameter 
o/r0 2 < i. As a result of simple, but quite awkward, calculations we obtain 
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where x k = xk(t) are the caustic coordinates, and F is the gamma function. 

The solution (1.3) is valid everywhere, with the exception of a neighborhood of the caustic, 
determined by the equation i - B/(I + (~x*) 2) = O. The equation of the caustic in the t, x 
plane was found in [i], where was also investigated the behavior of particle trajectories 
near the caustic. 

In Fig. i the solid line denotes the caustic, and the dashed line - the particle trajec- 
tory [i]. The solution (1.4) describes the dependence n(t, x) near the caustic for t > t , 
and Eqs. (1.5) - for t = t +. The corresponding dependences n(x) at three moments of time 
(t = O, t = t +, t > t +) are shown in Fig. 2 by lines 1-3. We estimate the maximum particle 
concentration at the caustic, and the width A at the half-maximum height of n(x). Putting 

in (1.4) o l l e / d , ~ O . l ,  He ~ 0. t ,  922/f)al~_~lO a, ~d ~ 0.1, ~ 2 ,  we obtain 
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d <~ l x --  x l, l <~ 5 d, 

whence nmax/n 0 -~ 4, A = d. 

To determine the bulk particle concentration m2(x) at the caustic it is necessary to 
evaluate the integral of n(x) (the third equation in (i.i)). If Ool/2d >~ i, from (1.5), 
(i.I) we have m2/m2 ~ -- n/n 0 , while if the opposite inequality 0oi/2/d << l is satisfied, 
then 

, 0  ;,( 
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I,T.. &, ', ~) I ' -  ")- Here ~d<<1; ,,--~--), << I; and x k is the coordinate of the point 0'. 

Figure 3 shows the dependence m2/m2 ~ calculated from the equation m2/m= ~ = n/n 0 and 

Eq. (1.6) for ad~ O.i, o'12,"d__ 3-I0-:', Oo'i~,;d--(i(;.lO-' . It has been shown in [i] that caustics 

are generated at quite high gradientsof u2~ satisfying the inequality 
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Ulp > l (lp ~ wx). ( 1 . 7 )  

Taking this condition into account, from (1.6) we find the maximum bulk particle concentra- 
tion at the caustic (m2/m2~ = 4/(d/s The boundedness of m 2 at the caustic leads 

to the circumstance that the number of collisions between particles at the caustic is small, 
and the initial Knudsen number N~ I/Kn ~ (Kn~ i) is determined. The presence of 

a critical gradient (1.7) is related to action of the gas on particles: thus, for flows with 
smaller gradients it is possible to equate the gas and particle velocities up to the genera- 
tion of caustics. 

2. We consider the Cauchy problem for system (i.I) in the case of particle dispersion 
in velocities with the initial condition 

/ (t = o) _ 

(u2~ was: determined in (1.2)). 
caustic 
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Carrying out a similar calculation, we obtain outside the 
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and near the point O' 

> +<+>.<, / 
( 2 . 4 )  
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~ Ii, ~ / ! 

n = ,l,,.(3czl:c --.:~:j, l) ~/:~, 8.~ ~ I x - x,, I ~ 7). 10:'-'.~. ( 2 . 5 )  

We estimate the maximum concentration at the caustic and the width for dispersion in 
velocities. Putting in (2.2) [3 ~- 2, ~d ~- 0.i, oi12/w ~- 0.i, we write 

~,'% "-~ 3 ( I  0.95a J x - -  x h [ / ., / '  

O < ~ l x - - x , l ~ < O . 2 5 d ,  , ~ . / , ~ o _ ~ / : / ( I x - - + , l )  ' + ~ , , ,  
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( 2 . 6 )  

whence nmax/n 0 = 3, A = 2.5d. The estimates provided show that the condition Kn >> i is 
quite well satisfied at the caustic. This proves the validity of system (i.i) in the given 
case. 

3. Next we consider flow of a mixture of gas with particles of large Reynolds numbers 
(Re = [u I - u21d/u >> i). The particle equations of motion are then 

dx du 2 4 P~ d (3.1) 
d'-7-= u'2' dt--(u~--u~)~/lv ,  l v ~ - t h  ' % '  e~ l~0 ,5 .  

We find the solution of the equation at u I = const 

U2==Ul--(Ul--U;)/(  t + t (u l - -u~) / lp) ,  ( 3 . 2 )  

*>) x = z * + u l t - - l p l n  I - F  u l - -u .2  , u l > u ~ ,  

(u;, x , ) :  (u2, x)i,=0. 
I t  i s  a s s u m e d  t h a t  t h e  p a r t i c l e s  a r e  l o c a t e d  i n  a c h a n n e l  o f  c o n s t a n t  c r o s s  s e c t i o n  o f  l e n g t h  
L,  t h a t  t h e  p a r t i c l e  v e l o c i t y  v a n i s h e s ,  t h e  d e n s i t y  i s  c o n s t a n t ,  a n d  t h e  r a d i u s  i s  n o r m a l l y  
d i s t r i b u t e d  

~/~__~_(j exp 6(u~) (r o (x*) ~- r,~ + A r a r c t g a x * ) :  ( 3 . 3 )  

The point x = 0 is in the middle of the channel, so that the coordinates of the left and 
right ends equal, respectively, -L/2, +L/2. At some moment a shock wave, behind whose front 
the gas moves with velocity ul, proceeds along the channel toward positive x. The particles 
start accelerating under the action of the gas, in which case the small ones overcome the 
larger ones, and a caustic can be generated at some moment. We find the moment of caustic 
formation and the distance between its branches under the assumption that tul/s << i. 
Expanding in series the right hand side in the second equation (3.2), we obtain 

whence we have with account of (3.3) 

u~ 12 (3.4) 
.C ~ 'r'~: -[- 21p  ' 

2 9 

__ t,q• '~ I) .... / (3.5) 
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Using (3.4), (3.5), we have the caustic equation 

I ' l l - '  t 
.c ~ -2~-o :+. ! / / t / ; * /  I 

I '  

/* (1/'H,) V'2/(I/zAr;r.,) ,  ( 3 . 6 )  

and the distance between caustic branches 

To find the particle concentration at the caustic we consider the identity 

/:'d..., 

where x, t are fixed. As follows from [i], the solutionof Eq. (I.i) is 
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Differentiating the second equation of system (3.9) with respect to uj ~, we write ~(~I= 

\, =/ 
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c o n d i t i o n  t h e  F be  a s m o o t h  f u n c t i o n ,  we f i n d  
/ l 

- =- , 7-~ " exp ~ a , t  
0u~ I,=o o% 

S u b s t i t u t i n g  f f r om ( 3 . 9 ) a n d  8 u 2 / S u 2 *  f rom ( 3 . 1 0 )  i n t o  t h e  l e f t h a n d  s i d e  o f  ( 3 . 8 ) ,  we o b t a i n  
the required identity. 

The identity (3.8) expresses a particle number conservation law, since the left and 
right hand sides of (3.8) include expressions for the numbers of particles at the same 
trajectories atthemoments t and t = O. Using identity (3,8) and the initial conditions 
(3.3) of particle concentration 

+~ 
�9 n 0 , ,  ~ Or ~ 

~. (l, :,) g ~  e x p ( .... (, --~,,~-/_~) o7.,. , .r". 

( 3 . 1 0 )  

The result of evaluating the integral coincides with (1.3)-(1.5), in which case ~ = (t/t*) 2, 
0 = ~ / ( ~ r ~ ) .  

We estimate the characteristic caustic sizes in a channel of length L = i0 cm. Let a 
bronze particle be found on the left, P22 = 8.6 g/cm 3, r 0 = 60 ~m, and a bronze particle on 
the right with r0 = 80 microns whence r s = 70 pm, kr = 20 pm, s = 84 cm (pll = 3.8"10 -3 
g/cm3). 

The transition region from one radius to the other is selected equal to i/~ = 0.21 cm. 
A shock wave with M = 3, behind whose front u I = 7.4-104 cm/sec, Pll = 3-8"10-3 g/cm3, 
propagates from left to right. Substituting the corresponding quantities into Eqs. (3.5)- 
(3.7), we find the caustic formation moment t + = 150 >sec, Xk(t +) = 0.73 cm, and the dis- 
tance between caustic branches at the point L/2 Ax % i cm. To determine the particle 
concentration at the caustic we assign ol12/d ~ 0.02; then, substituting ~ ~ 6.8,0(L/2) ~ 7-10 ~, 
0(0) ~ 10~, c~d~0.0Ol;  into (1.4), (1.5), we have (n/n,)h~_~ t .6 ,  n( t+) /%~_~7.26 , and the cluster 

t h i c k n e s s  A,~ " ' :  A ] l + _ 0 . S d  , w h e n c e  (,n,__~,,j ] ~ (7~0  ) ~ _ o . o d ,  ~ . . _  The initial particle concentration 

is selected from the condition of absence of interparticle collisions in the bulk. Repre- 
senting the number of particle collisions in the form of sum of collisions at the caustic 

0,5 

and outside the caustic N ~  ~ 2nd an (,r) d(x/d) + ~d'n ,, we obtain N ~  6m~ ((n/no)l+ @ L/d). Hence, 
0 
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t a k i n g  i n t o  a c c o u n t  t h a t  (n/n0) ,I. ~ 7, L/d ~_ 10 a, we f i n d  N ~ l / K n  o ~ 10-a/(6m{~). P u t t i n g  

Kn : 10 ,  we o b t a i n  m ~  1 . 7 . [ 0  ' a ,  n t O l / c m  ~. 

4. The results can be generalized to the case of arbitrary coordinate dependence of 
the initial particle velocity and an arbitrary dependence Cd(Re , M12) with constant gas 
velocity u~ = const. For simplicity the particles are assumed to be monodisperse, so that 
with account of (i.i), (3.8) we write the equation 

+~ 

n o ] / 2 - ~  e x p 2o duo. 

Here t, x are fixed, and u2~ *) is an arbitrary smooth function. 

The integral (4.1) is evaluated by expanding the exponential argument in series (u~ - 
* o o(~)) i s  t h e  u 2 + ) / J 7  o f  t h e  f u n c t i o n  ~ / 2 ~  := (u2 - -  u~ (x*))2/2~, w h e r e  uS = u 2 ($); x = ~ + ,~( t ,  u 2 

equation of motion. Restricting outselves to the first term in the expansion of ~, we 
obtain 

n/n o = 1 /  ~--~. . . (4.2) 

Equation (4.2) ~valid as long as ax/ax* does not vanish. The equation (Sx/Sx*) t = 0 deter- 

mines the caustic in the t, x* plane, the moment of caustic generation t + is found from the 

condition (a2x/3x*2)t+ = 0, and the condition of caustic generation is given by the 

equations d u ~ / d z * < O ,  dz* ~ > : [  " 

To f i n d  t h e  s o l u t i o n  n e a r  t h e  c a u s t i c ,  i t  i s  n e c e s s a r y  t o  r e t a i n  s m a l l e r  o r d e r  t e r m s  
i n  t h e  e x p a n s i o n  o f  ~ 2 .  As a r e s u l t  o f  t h e  c o r r e s p o n d i n g  c a l c u l a t i o n s  we d e t e r m i n e  t h e  
particle concentration at the caustic 

n/n o = t / ( 2 x ~  Ix - -  xhl)'/~, 

8114F (t/4) h.l/., x~  ~110" 
(n/no) h := 281,~1/z / , r  l%O/d l <<I. 

( 4 . 3 )  

In the special case u~(x*) = w s - w arctan~x* and for the Stokes flow regime, the equations 
obtained (4.3) are transformed to (2.2), (2.3). 

. 

2. 

3. 

4. 

5. 

LITERATURE CITED 

S. P. Kiselev and V. M. Fomin, "Continuum-discrete model for a gas-solid particle 
mixture with low bulk particle concentration," Prikl. Mekh. Tekhn. Fiz., No. 2 (1986). 
Ya. B. Zel'dovich and A. D. Myshkis, Elements of Mathematical Physics [in Russian], 
Nauka, Moscow (1973). 
A. N. Kraiko, "Correctness of the Cauchy problem for a two-liquid flow model of a mix- 
ture of gas with particles," Prikl. Mekh. Mat., 46, No. 3 (1982). 
V. M. Fomin and S. P. Kiselev, Combined Breakdown in a Gas Mixture with Solid 
Particles, Chisl. Metody Mekh. Sploshn. Sredy, 15, No. 2 (1984). 
A. P. Ershov, "Equations of mechanics of two-phase media," Zh. Prikl. Mekh. Tekh. Fiz., 
No. 6 (1983). 

630 


